Selasa, 28 Januari 2014

ARTIKEL DEFINISI TORSI DAN MOMEN INSERSIA + PEMBAHASAN



Momen Gaya (torsi)
 Dalam gerak rotasi, penyebab berputarnya benda merupakan momen gaya atau torsi. Momen gaya atau torsi sama dengan gaya pada gerak tranlasi. Momen gaya (torsi) adalah sebuah besaran yang menyatakan besarnya gaya yang bekerja pada sebuah benda sehingga mengakibatkan benda tersebut berotasi. Besarnya momen gaya (torsi) tergantung pada gaya yang dikeluarkan serta jarak antara sumbu putaran dan letak gaya. Apabila Anda ingin membuat sebuah benda berotasi, Anda harus memberikan momen gaya pada benda tersebut. Torsi disebut juga momen gaya dan merupakan besaran vektor. Untuk memahami momen gaya anda dapat melakukan hal berikut ini. Ambillah satu penggaris. Kemudian, tumpukan salah satu ujungnya pada tepi meja. Doronglah penggaris tersebut ke arah atas atau bawah meja. Bagaimanakah gerak penggaris? Selanjutnya, tariklah penggaris tersebut sejajar dengan arah panjang penggaris. Apakah yang terjadi?
Description: penggaris pada tepi meja
Saat Anda memberikan gaya F yang arahnya tegak lurus terhadap penggaris, penggaris itu cenderung untuk bergerak memutar. Namun, saat Anda memberikan gaya F yang arahnya sejajar dengan panjang penggaris, penggaris tidak bergerak. Hal yang sama berlaku saat Anda membuka pintu. Gaya yang Anda berikan pada pegangan pintu, tegak lurus terhadap daun pintu sehingga pintu dapat bergerak membuka dengan cara berputar pada engselnya. Gaya yang menyebabkan benda dapat berputar menurut sumbu putarnya inilah yang dinamakan momen gaya. Torsi adalah hasil perkalian silang antara vektor posisi r dengan gaya F, dapat dituliskan
Description: rumus torsi momen gaya
rumus torsi momen gaya
Gambar 6.8 Sebuah batang dikenai gaya sebesar yang tegak lurus terhadap batang dan berjarak sejauh r terhadap titik tumpu O. Batang tersebut memiliki momen gaya τ = r × F
Definisi momen gaya secara matematis dituliskan sebagai berikut.
τ = r × F
dengan:
r = lengan gaya = jarak sumbu rotasi ke titik tangkap gaya (m),
F = gaya yang bekerja pada benda (N), dan
τ = momen gaya (Nm).
Besarnya momen gaya atau torsi tergantung pada besar gaya dan lengan gaya. Sedangkan arah momen gaya menuruti aturan putaran tangan kanan, seperti yang ditunjukkan pada Gambar berikut:
Description: arah momen gaya
Jika arah putaran berlawanan dengan arah jarum jam maka arah momen gaya atau torsi ke atas, dan arah bila arah putaran searah dengan arah putaran jarum jam maka arah momen gaya ke bawah. Perhatikan Gambar 6.9. Pada gambar tersebut tampak dua orang anak sedang bermain jungkat-jungkit dan berada dalam keadaan setimbang, walaupun berat kedua anak tidak sama. Mengapa demikian? Hal ini berhubungan dengan lengan gaya yang digunakan. Anak yang lebih ringan berjarak 3 m dari titik tumpu (r1 = 3 m), sedangkan anak yang lebih berat memiliki lengan gaya yang lebih pendek, yaitu r2 = 1,5 m. Momen gaya yang dihasilkan oleh masing-masing anak adalah
τ1 = r1 × F1
= (3 m)(250 N)
= 750 Nm
τ2 = r2 × F2
= (1,5 m)(500 N)
= 750 Nm
Description: momen gaya pada jungkit
Gambar 6.9 Jungkat-jungkit setimbang karena momen gaya pada kedua lengannya sama besar.
Dapat disimpulkan bahwa kedudukan setimbang kedua anak adalah akibat momen gaya pada kedua lengan sama besar.
Description: momen gaya membentuk sudut
Gambar 6.10 Momen gaya yang ditimbulkan oleh gaya yang membentuk sudut θ terhadap benda (lengan gaya = r).
Perhatikan Gambar 6.10 Apabila gaya F yang bekerja pada benda membentuk sudut tertentu dengan lengan gayanya (r), Persamaan (6–18) akan berubah menjadi
τ = rFsinθ
…………… (6–19)
Dari Persamaan (6–19) tersebut, Anda dapat menyimpulkan bahwa gaya yang menyebabkan timbulnya momen gaya pada benda harus membentuk sudut θ terhadap lengan gayanya. Momen gaya terbesar diperoleh saat θ =90° (sinθ = 1), yaitu saat gaya dan lengan gaya saling tegak lurus. Anda juga dapat menyatakan bahwa jika gaya searah dengan arah lengan gaya, tidak ada momen gaya yang ditimbulkan (benda tidak akan berotasi). Perhatikanlah Gambar 6.11a dan 6.11b.
Gambar 6.11 Semakin panjang lengan gaya, momen gaya yang dihasilkan oleh gaya akan semakin besar.
Arah gaya terhadap lengan gaya menentukan besarnya momen gaya yang ditimbulkan. Momen gaya yang dihasilkan oleh gaya sebesar F pada Gambar 6.11b lebih besar daripada momen gaya yang dihasilkan oleh besar gaya F yang sama pada Gambar 6.11a. Hal tersebut disebabkan sudut antara arah gaya terhadap lengan gayanya. Momen gaya yang dihasilkan juga akan semakin besar jika lengan gaya semakin panjang, seperti terlihat pada Gambar 6.11c. Dengan demikian, dapat disimpulkan bahwa besar gaya F yang sama akan menghasilkan momen gaya yang lebih besar jika lengan gaya semakin besar. Prinsip ini dimanfaatkan oleh tukang pipa untuk membuka sambungan antarpipa. Sebagai besaran vektor, momen gaya τ memiliki besar dan arah. Perjanjian tanda untuk arah momen gaya adalah sebagai berikut.
Description: Contoh pemanfaatan torsi momen gaya pada obeng
Contoh pemanfaatan torsi momen gaya pada pemutar baut
a. Momen gaya,τ , diberi tanda positif jika cenderung memutar benda searah putaran jarum jam, atau arahnya mendekati pembaca.
b. Momen gaya,τ , diberi tanda negatif jika cenderung memutar benda berlawanan arah putaran jarum jam, atau arahnya menjauhi pembaca.
Description: momen gaya positif
Gambar 6.12 (a) Gaya yang menghasilkan momen gaya positif (mendekati pembaca) ditandai dengan titik. (b) Gaya yang menghasilkan momen gaya negatif (menjauhi pembaca) ditandai dengan tanda silang.
Perjanjian tanda untuk arah momen gaya ini dapat dijelaskan dengan aturan tangan kanan, seperti yang ditunjukkan pada Gambar 6.12. Arah jarijari merupakan arah lengan gaya, dan putaran jari merupakan arah gaya (searah putaran jarum jam atau berlawanan arah). Arah yang ditunjukkan oleh ibu jari Anda merupakan arah momen gaya (mendekati atau menjauhi pembaca). Perhatikan Gambar 6.13. Jika pada benda bekerja beberapa gaya, momen gaya total benda tersebut adalah sebagai berikut. Besar τ yang ditimbulkan oleh F1 dan F2 terhadap titik O adalah τ1 dan τ2. τ1 bernilai negatif karena arah rotasi yang ditimbulkannya berlawanan arah putaran jarum jam. Sedangkan, τ2 bernilai positif karena arah rotasi yang ditimbulkannya searah putaran jarum jam. Resultan momen gaya benda itu terhadap titik O dinyatakan sebagai jumlah vektor dari setiap momen gaya. Secara matematis dituliskan
τtotal = Σ (r × F)
atau
τtotal = τ1 + τ2
Contoh Soal Momen Gaya
Pada sebuah benda bekerja gaya 20 N seperti pada gambar. Jika titik tangkap gaya berjarak 25 cm dari titik P, berapakah besar momen gaya terhadap titik P?
Description: http://www.sridianti.com/cdn/wp-content/uploads/Fisika/momen-gaya/image9.jpg
Jawab
Diketahui: F = 20 N, r = 25 cm, dan θ = 150°.
τ = r F sinθ
= (0,25 cm)(20 N)(sin 150°)
= (0,25 cm)(20 N)( ½ )
= 2,5 Nm.
Sebuah gaya F = (3i + 5j) N memiliki lengan gaya r = (4i + 2j) m terhadap suatu titik poros. Vektor i dan j berturut-turut adalah vektor satuan yang searah dengan sumbu-x dan sumbu-y pada koordinat Kartesian. Berapakah besar momen gaya yang dilakukan gaya F terhadap titik poros?
Jawab
Diketahui: F = (3i + 5j)N dan r = (4i + 2j)m.
τ = r × F = (4i + 2j)m × (3i + 5j)N = (4)(5) (k) Nm + (2)(3) (–k) Nm = 14 k
Jadi, besarnya momen gaya 14 Nm yang searah sumbu z.
Batang AC yang panjangnya 30 cm diberi gaya seperti terlihat pada gambar.
Description: http://www.sridianti.com/cdn/wp-content/uploads/Fisika/momen-gaya/image10.jpg
Jika BC = 10 cm dan F1 = F2 = 20 N, berapakah momen gaya total terhadap titik A?
Jawab 
Diketahui: r1 = 20 cm, F1 = F2 = 20 N, r2 = 30 cm, θ1 =53°, dan θ2 = 90°.
τ = –r1 F1 sinθ1 + r2 F2 sinθ2
= –(0,2 m)(20 N)(sin 53°) + (0,3 m)(20 N)(sin 90°)
= –3,2 Nm + 6 Nm = –2,8 Nm.
Momen insersia
 (satuan SI kg m2) adalah ukuran ketahanan objek terhadap perubahan laju rotasinya. Besaran ini adalah analog rotasi daripada massa. Dengan kata lain, besaran ini adalah kelembaman sebuah benda tegar yang berputar terhadap rotasinya. Momen inersia berperan dalam dinamika rotasi seperti massa dalam dinamika dasar, dan menentukan hubungan antara momentum sudut dan kecepatan sudut, momen gaya dan percepatan sudut, dan beberapa besaran lain. Meskipun pembahasan skalar terhadap momen inersia, pembahasan menggunakan pendekatan tensor memungkinkan analisis sistem yang lebih rumit seperti gerakan giroskopik.
Lambang I dan kadang-kadang juga J biasanya digunakan untuk merujuk kepada momen inersia.
Konsep ini diperkenalkan oleh Euler dalam bukunya a Theoria motus corporum solidorum seu rigidorum pada tahun 1730.[1] Dalam buku tersebut, dia mengupas momen inersia dan banyak konsep terkait.

Definisi skalar
Definisi sederhana momen inersia (terhadap sumbu rotasi tertentu) dari sembarang objek, baik massa titik atau struktur tiga dimensi, diberikan oleh rumus:
Description: Description: I = \int r^2 \,dm\,\!
di mana m adalah massa dan r adalah jarak tegak lurus terhadap sumbu rotasi.
Analisis
Momen inersia (skalar) sebuah massa titik yang berputar pada sumbu yang diketahui didefinisikan oleh
Description: Description: I \triangleq  m  r^2\,\!
Momen inersia adalah aditif. Jadi, untuk sebuah benda tegar yang terdiri atas N massa titik mi dengan jarak ri terhadap sumbu rotasi, momen inersia total sama dengan jumlah momen inersia semua massa titik:
Description: Description: I \triangleq  \sum_{i=1}^{N} {m_{i} r_{i}^2}\,\!
Untuk benda pejal yang dideskripsikan oleh fungsi kerapatan massa ρ(r), momen inersia terhadap sumbu tertentu dapat dihitung dengan mengintegralkan kuadrat jarak terhadap sumbu rotasi, dikalikan dengan kerapatan massa pada suatu titik di benda tersebut:
Description: Description: I  \triangleq   \iiint_V \|\mathbf{r}\|^2 \,\rho(\mathbf{r})\,dV \!
di mana
V adalah volume yang ditempati objek
ρ adalah fungsi kerapatan spasial objek
r = (r,θ,φ), (x,y,z), atau (r,θ,z) adalah vektor (tegaklurus terhadap sumbu rotasi) antara sumbu rotasi dan titik di benda tersebut.
Description: Description: http://upload.wikimedia.org/wikipedia/commons/thumb/1/18/Moment_of_inertia_disc.svg/180px-Moment_of_inertia_disc.svg.png
Description: Description: http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png
Diagram perhitungan momen inersia sebuah piringan. Di sini k adalah 1/2 dan Description: Description: \mathbf{r}adalah jari-jari yang digunakan untuk menentukan momen inersia
Berdasarkan analisis dimensi saja, momen inersia sebuah objek bukan titik haruslah mengambil bentuk:
Description: Description:  I = k\cdot  M\cdot {R}^2 \,\!
di mana
M adalah massa
R adalah jari-jari objek dari pusat massa (dalam beberapa kasus, panjang objek yang digunakan)
k adalah konstanta tidak berdimensi yang dinamakan "konstanta inersia", yang berbeda-beda tergantung pada objek terkait.
Konstanta inersia digunakan untuk memperhitungkan perbedaan letak massa dari pusat rotasi. Contoh:

·         k = 1, cincin tipis atau silinder tipis di sekeliling pusat
·         k = 2/5, bola pejal di sekitar pusat
·         k = 1/2, silinder atau piringan pejal di sekitar pusat.

Cincin tipis berjari-jari R,
bermassa M dan lebar L (sumbu rotasi terletak di tengah-tengah salah satu diameter)
Cincin tipis berjari-jari R, bermassa M dan lebar L
(sumbu rotasi terletak pada salah satu garis singgung)
Silinder berongga,
dengan jari-jari dalam R2 dan jari-jari luar R1
Silinder padat
dengan jari-jari R (sumbu rotasi terletak pada sumbu silinder)
Silinder padat dengan jari-jari R
(sumbu rotasi terletak pada diameter pusat)
Bola pejal dengan jari-jari R
(sumbu rotasi terletak pada salah satu diameter)
Kulit Bola dengan jari-jari R
(sumbu rotasi terletak pada salah satu diameter)
Batang pejal yang panjangnya L
(sumbu rotasi terletak pada pusat )
Batang pejal yang panjangnya L
(sumbu rotasi terletak pada salah satu ujung)
Balok pejal yang panjangnya P dan lebarnya L
(sumbu rotasi terletak pada pusat; tegak lurus permukaan)
Latihan Soal 1 :
Sebuah partikel bermassa 2 kg diikatkan pada seutas tali yang panjangnya 0,5 meter (lihat gambar di bawah). Berapa momen Inersia partikel tersebut jika diputar ?
Panduan Jawaban :
Catatan :
Yang kita bahas ini adalah rotasi partikel, bukan benda tegar. Jadi bisa dianggap massa benda terkonsentrasi pada pusat massanya.
Momen inersianya berapa-kah ?
I = mr2
I = (2 kg) (0,5m)2
I = 0,5 kg m2
Gampang…..
Latihan Soal 2 :
Dua partikel, masing-masing bermassa 2 kg dan 4 kg, dihubungkan dengan sebuah kayu yang sangat ringan, di mana panjang kayu = 2 meter. (lihat gambar di bawah). Jika massa kayu diabaikan, tentukan momen inersia kedua partikel itu, jika :
a) Sumbu rotasi terletak di antara kedua partikel
Panduan Jawaban :
Momen inersia = 6 kg m2
b) Sumbu rotasi berada pada jarak 0,5 meter dari partikel yang bermassa 2 kg
Momen inersia = 9,5 kg m2
c) Sumbu rotasi berada pada jarak 0,5 meter dari partikel yang bermassa 4 kg
Momen inersia = 5,5 kg m2
Berdasarkan hasil perhitungan di atas, tampak bahwa Momen Inersia sangat dipengaruhi oleh posisi sumbu rotasi. Hasil oprekan soal menunjukkan hasil momen Inersia yang berbeda-beda. Partikel yang berada di dekat sumbu rotasi memiliki momen inersia yang kecil, sebaliknya partikel yang berada jauh dari sumbu rotasi memiliki momen inersia yang besar. Jika kita mengandaikan bahwa kedua partikel di atas merupakan benda tegar, maka setiap partikel penyusun benda tegar yang berada di dekat sumbu rotasi memiliki momen inersia yang lebih kecil dibandingkan dengan momen inersia partikel yang jaraknya lebih jauh dari sumbu rotasi. Walaupun bentuk dan ukuran sama, tapi karena posisi sumbu rotasi berbeda, maka momen inersia juga berbeda.
Latihan Soal 3 :
Empat partikel, masing-masing bermassa 2 kg dihubungkan oleh batang kayu yang sangat ringan dan membentuk segiempat (lihat gambar di bawah). Tentukan momen inersia gabungan keempat partikel ini, jika mereka berotasi terhadap sumbu seperti yang ditunjukkan pada gambar (massa kayu diabaikan).
Momen iInersia gabungan dari keempat partikel ini (dianggap satu sistem) mudah dihitung. Jarak masing-masing partikel dari sumbu rotasi sama (rA = rB = rC = rD = 1 meter). Jarak AC = BD = 4 meter tidak berpengaruh, karena yang diperhitungkan hanya jarak partikel diukur dari sumbu rotasi.
I = mr2
I = (2 kg)(1 m)2
I = 2 kg m2
Karena IA = IB = IC = ID = I, maka momen inersia (I) total :
I = 4(I)
I = 4(2 kg m2)
I = 8 kg m2

1 komentar:

  1. artikelnya bagus mba, saya lagi butuh buat tugas fisika, eh ketemu disini

    BalasHapus